Skip to main content

Reinforcement Learning in Robotics

Overview​

Reinforcement Learning (RL) is a powerful machine learning paradigm that has revolutionized robotics by enabling robots to learn complex behaviors through interaction with their environment. Unlike supervised learning which requires labeled examples, or unsupervised learning which finds patterns in unlabeled data, RL learns through trial and error by receiving rewards or penalties for actions taken. This lesson introduces the fundamental concepts of reinforcement learning and explores how these principles are applied to robotic systems.

Fundamentals of Reinforcement Learning​

The RL Framework​

Reinforcement Learning is based on the interaction between an agent and its environment. The core components of an RL system are:

  • Agent: The learner/controller (in robotics, typically the robot itself)
  • Environment: The world in which the agent operates
  • State (s): The current situation of the environment
  • Action (a): What the agent can do
  • Reward (r): Feedback from the environment
  • Policy (Ï€): Strategy for selecting actions
  • Value Function (V): Expected return from a state
  • Model: Agent's representation of the environment

The RL process follows this cycle:

  1. Agent observes state s_t
  2. Agent selects action a_t based on policy π
  3. Agent executes action a_t
  4. Environment transitions to state s_{t+1}
  5. Environment provides reward r_{t+1}
  6. Repeat

Markov Decision Processes (MDPs)​

Most RL problems in robotics can be formulated as Markov Decision Processes, where the next state depends only on the current state and action, not on the history of previous states:

P(s\_{t+1}|s\_t, a\_t) = P(s\_{t+1}|s\_0, a\_0, ..., s\_t, a\_t)

This Markov property is crucial for efficient learning algorithms.

Core RL Components in Robotics​

State Space​

In robotics, the state space typically includes:

class RobotState:
def __init__(self):
# Joint positions and velocities
self.joint_positions = [] # e.g., [0.1, -0.5, 1.2, ...]
self.joint_velocities = [] # e.g., [0.01, -0.02, 0.05, ...]

# End-effector pose and velocity
self.ee_position = [0.0, 0.0, 0.0] # Cartesian position
self.ee_orientation = [0.0, 0.0, 0.0, 1.0] # Quaternion
self.ee_velocity = [0.0, 0.0, 0.0] # Linear velocity

# Sensor readings
self.camera_image = None # RGB or depth image
self.lidar_scan = [] # Distance measurements
self.force_torque = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # 6-axis F/T sensor

# Task-specific information
self.target_position = [0.5, 0.5, 0.1] # Where to go
self.object_pose = [0.3, 0.4, 0.05, 0.0, 0.0, 0.0, 1.0] # Object location and orientation

Action Space​

Robot actions can be discrete or continuous:

# Discrete actions (for simpler tasks)
discrete_actions = [
"move_forward",
"turn_left",
"turn_right",
"move_backward",
"stop"
]

# Continuous actions (for precise control)
class ContinuousActionSpace:
def __init__(self):
# Joint position control
self.joint_positions = np.zeros(7) # For 7-DOF manipulator

# Cartesian velocity control
self.linear_velocity = np.zeros(3) # [vx, vy, vz]
self.angular_velocity = np.zeros(3) # [wx, wy, wz]

# Torque control
self.joint_torques = np.zeros(7)

# Gripper control
self.gripper_position = 0.0 # [0.0 (closed), 1.0 (open)]

Reward Functions​

Designing appropriate reward functions is critical for successful RL in robotics:

def navigation_reward(current_state, action, next_state, goal_position):
"""Reward function for navigation task"""
current_pos = current_state['position']
next_pos = next_state['position']

# Distance to goal reward
current_dist = np.linalg.norm(current_pos - goal_position)
next_dist = np.linalg.norm(next_pos - goal_position)

# Progress toward goal (positive if getting closer)
progress_reward = current_dist - next_dist

# Collision penalty
collision_penalty = -10.0 if next_state['collision'] else 0.0

# Goal reached bonus
goal_bonus = 100.0 if next_dist < 0.1 else 0.0 # 10cm threshold

# Energy efficiency (negative of action magnitude)
energy_penalty = -0.01 * np.sum(np.abs(action))

total_reward = progress_reward + collision_penalty + goal_bonus + energy_penalty
return total_reward

def manipulation_reward(current_state, action, next_state, target_object):
"""Reward function for manipulation task"""
ee_pos = next_state['end_effector_position']
obj_pos = next_state['object_position']

# Distance to object
dist_to_obj = np.linalg.norm(ee_pos - obj_pos)

# Object lifting reward
obj_height = obj_pos[2] # z-coordinate
lift_reward = max(0, obj_height - 0.1) * 10 # Reward for lifting above 10cm

# Grasping reward (based on contact sensors)
grasp_reward = 10.0 if next_state['grasp_success'] else 0.0

# Stability penalty (penalize excessive movement)
stability_penalty = -0.1 * np.sum(np.abs(next_state['joint_velocities']))

total_reward = (-dist_to_obj * 0.1) + lift_reward + grasp_reward + stability_penalty
return total_reward

Classic RL Algorithms​

Q-Learning​

Q-Learning is a model-free RL algorithm that learns the value of state-action pairs:

import numpy as np

class QLearningAgent:
def __init__(self, state_size, action_size, learning_rate=0.01, discount_factor=0.95, epsilon=1.0, epsilon_decay=0.995, epsilon_min=0.01):
self.state_size = state_size
self.action_size = action_size
self.lr = learning_rate
self.gamma = discount_factor
self.epsilon = epsilon
self.epsilon_decay = epsilon_decay
self.epsilon_min = epsilon_min

# Initialize Q-table (for discrete states) or function approximator
# For continuous states, we'd use neural networks instead
self.q_table = np.zeros((state_size, action_size))

def act(self, state):
"""Choose action using epsilon-greedy policy"""
if np.random.random() <= self.epsilon:
# Explore: random action
return np.random.choice(self.action_size)

# Exploit: best known action
state_idx = self.discretize_state(state)
return np.argmax(self.q_table[state_idx])

def learn(self, state, action, reward, next_state, done):
"""Update Q-value using Bellman equation"""
state_idx = self.discretize_state(state)
next_state_idx = self.discretize_state(next_state)

# Q-learning update rule
if done:
target = reward
else:
target = reward + self.gamma * np.max(self.q_table[next_state_idx])

# Update Q-value
self.q_table[state_idx, action] += self.lr * (target - self.q_table[state_idx, action])

# Decay exploration rate
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay

def discretize_state(self, continuous_state):
"""Convert continuous state to discrete index (simplified)"""
# This is a simplified example - in practice, you'd have more sophisticated discretization
# For continuous state spaces, use function approximation (neural networks)
return hash(tuple(continuous_state)) % self.state_size

Deep Q-Networks (DQN)​

For complex robotic tasks with high-dimensional state spaces, Deep Q-Networks use neural networks to approximate the Q-function:

import torch
import torch.nn as nn
import torch.optim as optim
import random
from collections import deque

class DQN(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(DQN, self).__init__()

self.network = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim)
)

def forward(self, x):
return self.network(x)

class DQNAgent:
def __init__(self, state_dim, action_dim, lr=1e-3):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Neural networks
self.q_network = DQN(state_dim, action_dim).to(self.device)
self.target_network = DQN(state_dim, action_dim).to(self.device)
self.optimizer = optim.Adam(self.q_network.parameters(), lr=lr)

# Hyperparameters
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.update_target_freq = 1000

# Replay buffer
self.memory = deque(maxlen=100000)
self.batch_size = 32
self.update_count = 0

def remember(self, state, action, reward, next_state, done):
"""Store experience in replay buffer"""
self.memory.append((state, action, reward, next_state, done))

def act(self, state):
"""Choose action using epsilon-greedy policy"""
if random.random() <= self.epsilon:
return random.randrange(self.action_dim)

state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device)
q_values = self.q_network(state_tensor)
return q_values.max(1)[1].item()

def replay(self):
"""Train on batch of experiences"""
if len(self.memory) < self.batch_size:
return

batch = random.sample(self.memory, self.batch_size)
states = torch.FloatTensor([e[0] for e in batch]).to(self.device)
actions = torch.LongTensor([e[1] for e in batch]).to(self.device)
rewards = torch.FloatTensor([e[2] for e in batch]).to(self.device)
next_states = torch.FloatTensor([e[3] for e in batch]).to(self.device)
dones = torch.BoolTensor([e[4] for e in batch]).to(self.device)

current_q_values = self.q_network(states).gather(1, actions.unsqueeze(1))
next_q_values = self.target_network(next_states).max(1)[0].detach()
target_q_values = rewards + (self.gamma * next_q_values * ~dones)

loss = nn.MSELoss()(current_q_values.squeeze(), target_q_values)

self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

# Decay exploration
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay

# Update target network
self.update_count += 1
if self.update_count % self.update_target_freq == 0:
self.target_network.load_state_dict(self.q_network.state_dict())

Policy Gradient Methods​

REINFORCE Algorithm​

Policy gradient methods directly optimize the policy rather than learning a value function:

class PolicyGradientAgent:
def __init__(self, state_dim, action_dim, hidden_dim=256, lr=1e-3):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Policy network
self.policy_network = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim),
nn.Softmax(dim=-1)
).to(self.device)

self.optimizer = optim.Adam(self.policy_network.parameters(), lr=lr)

# For storing episode data
self.log_probs = []
self.rewards = []

def act(self, state):
"""Sample action from policy"""
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device)

with torch.no_grad():
action_probs = self.policy_network(state_tensor)
action_dist = torch.distributions.Categorical(action_probs)
action = action_dist.sample()
log_prob = action_dist.log_prob(action)

self.log_probs.append(log_prob)
return action.item()

def update_policy(self):
"""Update policy using REINFORCE algorithm"""
# Calculate discounted returns
returns = []
R = 0
for r in reversed(self.rewards):
R = r + 0.99 * R
returns.insert(0, R)

# Normalize returns
returns = torch.tensor(returns).to(self.device)
returns = (returns - returns.mean()) / (returns.std() + 1e-9)

# Calculate loss
policy_loss = []
for log_prob, R in zip(self.log_probs, returns):
policy_loss.append(-log_prob * R)

policy_loss = torch.stack(policy_loss).sum()

# Update policy
self.optimizer.zero_grad()
policy_loss.backward()
self.optimizer.step()

# Reset episode data
self.log_probs = []
self.rewards = []

Actor-Critic Methods​

Actor-critic methods combine policy-based and value-based approaches:

class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(ActorCritic, self).__init__()

# Shared feature extractor
self.feature_extractor = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU()
)

# Actor (policy network)
self.actor = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim),
nn.Softmax(dim=-1)
)

# Critic (value network)
self.critic = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)

def forward(self, state):
features = self.feature_extractor(state)
action_probs = self.actor(features)
value = self.critic(features)
return action_probs, value

class ActorCriticAgent:
def __init__(self, state_dim, action_dim, lr=3e-4):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

self.ac_network = ActorCritic(state_dim, action_dim).to(self.device)
self.optimizer = optim.Adam(self.ac_network.parameters(), lr=lr)

self.gamma = 0.99

def act(self, state):
"""Sample action from current policy"""
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device)

with torch.no_grad():
action_probs, _ = self.ac_network(state_tensor)
action_dist = torch.distributions.Categorical(action_probs)
action = action_dist.sample()

return action.item(), action_dist.log_prob(action)

def update(self, state, action, reward, next_state, done):
"""Update actor and critic networks"""
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device)
action_tensor = torch.LongTensor([action]).to(self.device)
reward_tensor = torch.FloatTensor([reward]).to(self.device)
next_state_tensor = torch.FloatTensor(next_state).unsqueeze(0).to(self.device)

# Get current and next state values
current_action_probs, current_value = self.ac_network(state_tensor)
_, next_value = self.ac_network(next_state_tensor)

# Calculate advantage
target_value = reward_tensor + (1 - done) * self.gamma * next_value.squeeze()
advantage = target_value - current_value.squeeze()

# Calculate losses
action_dist = torch.distributions.Categorical(current_action_probs)
log_prob = action_dist.log_prob(action_tensor)

actor_loss = -(log_prob * advantage.detach()).mean()
critic_loss = advantage.pow(2).mean()

# Update networks
self.optimizer.zero_grad()
(actor_loss + 0.5 * critic_loss).backward()
self.optimizer.step()

Robotics-Specific RL Applications​

Robot Control with Deep RL​

Applying deep RL to continuous control tasks in robotics:

class RobotControlEnvironment:
def __init__(self):
# Initialize robot simulation
self.robot = self.initialize_robot()
self.max_steps = 1000
self.current_step = 0

def reset(self):
"""Reset environment to initial state"""
self.robot.reset()
self.current_step = 0
return self.get_state()

def step(self, action):
"""Execute action and return (next_state, reward, done, info)"""
# Apply action to robot
self.robot.apply_action(action)

# Step simulation
self.robot.step_simulation()

# Get next state
next_state = self.get_state()

# Calculate reward
reward = self.calculate_reward(action)

# Check if episode is done
done = self.is_terminal_state() or self.current_step >= self.max_steps
self.current_step += 1

return next_state, reward, done, {}

def get_state(self):
"""Get current state of the robot"""
state = np.concatenate([
self.robot.get_joint_positions(),
self.robot.get_joint_velocities(),
self.robot.get_end_effector_position(),
self.robot.get_end_effector_orientation(),
self.robot.get_force_torque_sensors()
])
return state

def calculate_reward(self, action):
"""Calculate reward based on current state and action"""
# Example: Reaching task
ee_pos = self.robot.get_end_effector_position()
target_pos = self.get_target_position()

distance = np.linalg.norm(ee_pos - target_pos)

# Dense reward for progress
reward = -distance # Negative distance encourages moving toward target

# Bonus for getting close
if distance < 0.05: # 5cm threshold
reward += 10.0

# Penalty for excessive joint velocities
joint_velocities = self.robot.get_joint_velocities()
velocity_penalty = -0.01 * np.sum(np.abs(joint_velocities))

# Penalty for high action magnitudes (energy efficiency)
action_penalty = -0.001 * np.sum(np.abs(action))

total_reward = reward + velocity_penalty + action_penalty
return total_reward

def is_terminal_state(self):
"""Check if current state is terminal"""
ee_pos = self.robot.get_end_effector_position()
target_pos = self.get_target_position()

distance = np.linalg.norm(ee_pos - target_pos)

# Episode ends if robot reaches target or collides
return (distance < 0.05) or self.robot.has_collided()

class ContinuousControlAgent:
def __init__(self, state_dim, action_dim):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Actor network for continuous action space
self.actor = nn.Sequential(
nn.Linear(state_dim, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, action_dim),
nn.Tanh() # Actions in [-1, 1]
).to(self.device)

# Critic network
self.critic = nn.Sequential(
nn.Linear(state_dim + action_dim, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 1)
).to(self.device)

# Target networks for stability
self.target_actor = copy.deepcopy(self.actor).to(self.device)
self.target_critic = copy.deepcopy(self.critic).to(self.device)

self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=1e-4)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=1e-3)

self.gamma = 0.99
self.tau = 0.005 # Soft update parameter
self.noise_std = 0.1 # Exploration noise

def select_action(self, state, add_noise=True):
"""Select action with optional exploration noise"""
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device)

with torch.no_grad():
action = self.actor(state_tensor)

if add_noise:
noise = torch.randn_like(action) * self.noise_std
action = torch.clamp(action + noise, -1, 1)

return action.cpu().numpy()[0]

def update_networks(self, replay_buffer, batch_size=100):
"""Update actor and critic networks using DDPG algorithm"""
if len(replay_buffer) < batch_size:
return

# Sample batch from replay buffer
states, actions, rewards, next_states, dones = replay_buffer.sample(batch_size)

states = torch.FloatTensor(states).to(self.device)
actions = torch.FloatTensor(actions).to(self.device)
rewards = torch.FloatTensor(rewards).unsqueeze(1).to(self.device)
next_states = torch.FloatTensor(next_states).to(self.device)
dones = torch.BoolTensor(dones).unsqueeze(1).to(self.device)

# Update critic
with torch.no_grad():
next_actions = self.target_actor(next_states)
next_q_values = self.target_critic(torch.cat([next_states, next_actions], dim=1))
target_q_values = rewards + (1 - dones) * self.gamma * next_q_values

current_q_values = self.critic(torch.cat([states, actions], dim=1))
critic_loss = nn.MSELoss()(current_q_values, target_q_values)

self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()

# Update actor
predicted_actions = self.actor(states)
actor_loss = -self.critic(torch.cat([states, predicted_actions], dim=1)).mean()

self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()

# Soft update target networks
self.soft_update(self.target_critic, self.critic, self.tau)
self.soft_update(self.target_actor, self.actor, self.tau)

def soft_update(self, target_network, source_network, tau):
"""Soft update target network parameters"""
for target_param, param in zip(target_network.parameters(), source_network.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)

Multi-Agent RL for Robotics​

class MultiRobotEnvironment:
def __init__(self, num_robots=2):
self.num_robots = num_robots
self.robots = [self.initialize_robot(i) for i in range(num_robots)]
self.shared_environment = self.initialize_environment()

def reset(self):
"""Reset multi-robot environment"""
for robot in self.robots:
robot.reset()
return [robot.get_state() for robot in self.robots]

def step(self, actions):
"""Execute actions for all robots"""
next_states = []
rewards = []
dones = []
infos = []

# Execute actions simultaneously
for i, (robot, action) in enumerate(zip(self.robots, actions)):
robot.apply_action(action)

# Step simulation
self.shared_environment.step()

# Get results for each robot
for robot in self.robots:
next_states.append(robot.get_state())
rewards.append(self.calculate_cooperative_reward(robot))
dones.append(robot.is_terminal())
infos.append({})

return next_states, rewards, dones, infos

def calculate_cooperative_reward(self, robot):
"""Calculate reward considering cooperation among robots"""
robot_pos = robot.get_position()

# Individual task completion
task_reward = self.get_task_completion_reward(robot)

# Collision avoidance with other robots
collision_penalty = 0
for other_robot in self.robots:
if other_robot != robot:
dist = np.linalg.norm(robot_pos - other_robot.get_position())
if dist < 0.5: # 50cm threshold
collision_penalty -= 10.0

# Formation maintenance (if applicable)
formation_reward = self.get_formation_reward(robot)

total_reward = task_reward + collision_penalty + formation_reward
return total_reward

class MADDPGAgent:
"""Multi-Agent Deep Deterministic Policy Gradient"""
def __init__(self, agent_id, state_dim, action_dim, num_agents):
self.agent_id = agent_id
self.state_dim = state_dim
self.action_dim = action_dim
self.num_agents = num_agents

self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Each agent has its own actor but shares critic information
self.actor = self.build_actor()
self.critic = self.build_critic()
self.target_actor = copy.deepcopy(self.actor)
self.target_critic = copy.deepcopy(self.critic)

self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=1e-4)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=1e-3)

def build_actor(self):
"""Build actor network for this agent"""
return nn.Sequential(
nn.Linear(self.state_dim, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, self.action_dim),
nn.Tanh()
).to(self.device)

def build_critic(self):
"""Build critic network that takes state and action of all agents"""
# Input: concatenated states of all agents + concatenated actions of all agents
total_state_dim = self.state_dim * self.num_agents
total_action_dim = self.action_dim * self.num_agents

return nn.Sequential(
nn.Linear(total_state_dim + total_action_dim, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 1)
).to(self.device)

def select_action(self, state, add_noise=True):
"""Select action for this agent"""
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device)

with torch.no_grad():
action = self.actor(state_tensor)

if add_noise:
noise = torch.randn_like(action) * 0.1
action = torch.clamp(action + noise, -1, 1)

return action.cpu().numpy()[0]

def update(self, experiences, other_agents):
"""Update this agent's networks using experiences from all agents"""
states = torch.FloatTensor(experiences['states']).to(self.device)
actions = torch.FloatTensor(experiences['actions']).to(self.device)
rewards = torch.FloatTensor(experiences['rewards'][:, self.agent_id]).unsqueeze(1).to(self.device)
next_states = torch.FloatTensor(experiences['next_states']).to(self.device)
dones = torch.BoolTensor(experiences['dones'][:, self.agent_id]).unsqueeze(1).to(self.device)

# Get next actions from target actors of all agents
next_actions = []
for i, agent in enumerate(other_agents):
if i == self.agent_id:
next_action = self.target_actor(next_states[:, i, :])
else:
next_action = agent.target_actor(next_states[:, i, :])
next_actions.append(next_action)

next_actions = torch.cat(next_actions, dim=1)

# Calculate target Q-value
with torch.no_grad():
next_q_values = self.target_critic(
torch.cat([next_states.view(next_states.size(0), -1),
next_actions], dim=1)
)
target_q_values = rewards + (1 - dones) * 0.99 * next_q_values

# Calculate current Q-value
current_actions = actions.clone()
current_actions[:, self.agent_id, :] = self.actor(states[:, self.agent_id, :])
current_q_values = self.critic(
torch.cat([states.view(states.size(0), -1),
current_actions.view(current_actions.size(0), -1)], dim=1)
)

# Update critic
critic_loss = nn.MSELoss()(current_q_values, target_q_values)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()

# Update actor
predicted_action = self.actor(states[:, self.agent_id, :])
temp_actions = actions.clone()
temp_actions[:, self.agent_id, :] = predicted_action
actor_loss = -self.critic(
torch.cat([states.view(states.size(0), -1),
temp_actions.view(temp_actions.size(0), -1)], dim=1)
).mean()

self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()

Learning Objectives​

By the end of this lesson, you should be able to:

  • Understand the fundamental concepts of reinforcement learning and its application to robotics
  • Identify the key components of RL systems (states, actions, rewards, policies)
  • Implement basic RL algorithms like Q-Learning and Deep Q-Networks
  • Apply policy gradient methods and actor-critic algorithms to robotic tasks
  • Design appropriate reward functions for robotic control problems
  • Understand the challenges of applying RL to real-world robotic systems
  • Recognize the differences between discrete and continuous action spaces in robotics
  • Evaluate the potential of RL for solving complex robotic manipulation and navigation tasks
Physical AI assistant
Hello! I am your Physical AI assistant. Ask me anything about the course!