Sim-to-Real Transfer Techniques
Overview​
Sim-to-real transfer, also known as reality gap bridging, is the process of transferring knowledge, policies, or behaviors learned in simulation to real-world robotic systems. This challenge arises because simulations, despite their sophistication, cannot perfectly model all aspects of the real world. This lesson explores the fundamental challenges of sim-to-real transfer and presents various techniques to bridge the reality gap, including domain randomization, domain adaptation, and other advanced approaches.
The Reality Gap Problem​
Understanding the Sim-to-Real Transfer Challenge​
The reality gap refers to the differences between simulation and real-world environments that can cause algorithms trained in simulation to fail when deployed on real robots. These differences manifest in several forms:
import numpy as np
import matplotlib.pyplot as plt
class RealityGapAnalyzer:
def __init__(self):
self.sim_params = {
'friction': 0.0, # Idealized friction
'mass': 1.0, # Perfectly known mass
'geometry': 'perfect', # Perfect geometric models
'sensor_noise': 0.0, # Noise-free sensors
'actuator_dynamics': 'ideal' # Instantaneous response
}
self.real_params = {
'friction': 0.1, # Real-world friction
'mass': 1.05, # Actual mass with variations
'geometry': 'approximate', # Approximated geometry
'sensor_noise': 0.05, # Real sensor noise
'actuator_dynamics': 'delayed' # Delayed response
}
def calculate_reality_gap(self, metric='euclidean'):
"""
Calculate the reality gap between simulation and real parameters
"""
gap = 0.0
# Normalize and compare parameters
friction_gap = abs(self.sim_params['friction'] - self.real_params['friction'])
mass_gap = abs(self.sim_params['mass'] - self.real_params['mass'])
noise_gap = abs(self.sim_params['sensor_noise'] - self.real_params['sensor_noise'])
if metric == 'euclidean':
gap = np.sqrt(friction_gap**2 + mass_gap**2 + noise_gap**2)
elif metric == 'manhattan':
gap = friction_gap + mass_gap + noise_gap
elif metric == 'max':
gap = max(friction_gap, mass_gap, noise_gap)
return gap
def analyze_transfer_failure_modes(self):
"""
Analyze different failure modes in sim-to-real transfer
"""
failure_modes = {
'dynamics_mismatch': {
'description': 'Simulated vs real robot dynamics differ',
'impact': 'Control policies fail to achieve desired behavior',
'severity': 'high',
'mitigation': 'System identification, adaptive control'
},
'visual_appearance': {
'description': 'Simulated vs real visual appearance differ',
'impact': 'Computer vision algorithms fail on real images',
'severity': 'high',
'mitigation': 'Domain randomization, synthetic-to-real techniques'
},
'sensor_characteristics': {
'description': 'Simulated vs real sensor properties differ',
'impact': 'Perception and localization fail',
'severity': 'high',
'mitigation': 'Sensor calibration, noise modeling'
},
'environment_modeling': {
'description': 'Simulated vs real environment differ',
'impact': 'Navigation and manipulation fail',
'severity': 'medium',
'mitigation': 'Environment randomization, online learning'
},
'actuator_dynamics': {
'description': 'Simulated vs real actuator behavior differ',
'impact': 'Precise control becomes impossible',
'severity': 'high',
'mitigation': 'Detailed actuator modeling, feedback control'
}
}
return failure_modes
def plot_reality_gap_distribution(self):
"""
Visualize the distribution of reality gaps across different parameters
"""
parameters = list(self.sim_params.keys())
sim_values = list(self.sim_params.values())
real_values = list(self.real_params.values())
x = np.arange(len(parameters))
width = 0.35
fig, ax = plt.subplots(figsize=(12, 6))
ax.bar(x - width/2, sim_values, width, label='Simulation', alpha=0.8)
ax.bar(x + width/2, real_values, width, label='Reality', alpha=0.8)
ax.set_xlabel('Parameters')
ax.set_ylabel('Values')
ax.set_title('Reality Gap: Simulation vs Reality Parameter Comparison')
ax.set_xticks(x)
ax.set_xticklabels(parameters, rotation=45, ha='right')
ax.legend()
plt.tight_layout()
plt.show()
return fig
Quantifying the Transfer Gap​
class TransferGapQuantifier:
def __init__(self):
self.sim_performance = 0.0
self.real_performance = 0.0
self.transfer_efficiency = 0.0
def calculate_transfer_metrics(self, sim_success_rate, real_success_rate):
"""
Calculate various transfer metrics
"""
metrics = {}
# Absolute Performance Gap
metrics['absolute_gap'] = sim_success_rate - real_success_rate
# Relative Performance Gap
if sim_success_rate > 0:
metrics['relative_gap'] = (sim_success_rate - real_success_rate) / sim_success_rate
else:
metrics['relative_gap'] = float('inf')
# Transfer Efficiency
metrics['transfer_efficiency'] = real_success_rate / sim_success_rate if sim_success_rate > 0 else 0
# Zero-Shot Success Rate
metrics['zero_shot_success'] = real_success_rate
# Sample Efficiency Ratio
metrics['sample_efficiency'] = self.calculate_sample_efficiency(sim_success_rate, real_success_rate)
return metrics
def calculate_sample_efficiency(self, sim_samples, real_samples):
"""
Calculate how efficiently samples translate from sim to real
"""
# This is a simplified example
# Real implementation would involve more complex analysis
return real_samples / sim_samples if sim_samples > 0 else 0
def calculate_domain_similarity(self, sim_features, real_features):
"""
Calculate domain similarity using Maximum Mean Discrepancy (MMD)
"""
# Simplified MMD calculation
# In practice, this would use kernel methods
mean_sim = np.mean(sim_features, axis=0)
mean_real = np.mean(real_features, axis=0)
# Euclidean distance between means as proxy for MMD
mmd = np.linalg.norm(mean_sim - mean_real)
return mmd
def evaluate_transfer_robustness(self, policies, test_conditions):
"""
Evaluate how robust policies are to condition changes
"""
robustness_scores = []
for policy in policies:
condition_scores = []
for condition in test_conditions:
score = self.evaluate_policy_under_condition(policy, condition)
condition_scores.append(score)
# Robustness is the consistency across conditions
robustness = 1.0 - np.std(condition_scores) / (np.mean(condition_scores) + 1e-8)
robustness_scores.append(robustness)
return robustness_scores
def evaluate_policy_under_condition(self, policy, condition):
"""
Evaluate policy performance under specific condition
"""
# This would involve running the policy in simulation with the condition
# and measuring performance
return np.random.random() # Placeholder
Domain Randomization Techniques​
Basic Domain Randomization​
Domain randomization involves randomizing simulation parameters to make policies robust to variations:
import numpy as np
import random
class DomainRandomizer:
def __init__(self):
self.randomization_ranges = {
'friction': (0.0, 1.0),
'mass': (0.8, 1.2),
'restitution': (0.0, 0.5),
'gravity': (9.5, 10.1),
'texture_resolution': (100, 1000),
'lighting_condition': (0.5, 2.0),
'camera_noise': (0.0, 0.1),
'actuator_delay': (0.0, 0.05)
}
self.current_params = {}
self.reset()
def reset(self):
"""Reset to random domain parameters"""
self.current_params = {}
for param, (min_val, max_val) in self.randomization_ranges.items():
self.current_params[param] = random.uniform(min_val, max_val)
def randomize_environment(self):
"""Apply randomization to simulation environment"""
randomized_env = {}
# Randomize physical properties
randomized_env['friction'] = self.current_params['friction']
randomized_env['mass_multiplier'] = self.current_params['mass']
randomized_env['restitution'] = self.current_params['restitution']
randomized_env['gravity'] = self.current_params['gravity']
# Randomize visual properties
randomized_env['texture_complexity'] = self.current_params['texture_resolution']
randomized_env['lighting_intensity'] = self.current_params['lighting_condition']
# Randomize sensor properties
randomized_env['camera_noise_level'] = self.current_params['camera_noise']
randomized_env['actuator_response_time'] = self.current_params['actuator_delay']
return randomized_env
def update_randomization_ranges(self, new_ranges):
"""Update the randomization ranges based on real-world observations"""
for param, (min_val, max_val) in new_ranges.items():
if param in self.randomization_ranges:
self.randomization_ranges[param] = (min_val, max_val)
def randomize_episode(self):
"""Randomize for a new episode"""
self.reset()
return self.randomize_environment()
def get_current_domain_params(self):
"""Get current domain parameters"""
return self.current_params.copy()
Advanced Domain Randomization​
class AdvancedDomainRandomizer:
def __init__(self):
self.param_groups = {
'dynamics': ['friction', 'mass', 'restitution', 'gravity'],
'visual': ['texture_resolution', 'lighting_condition', 'camera_noise'],
'actuation': ['actuator_delay', 'max_force', 'gear_ratio']
}
self.correlation_matrix = self.initialize_correlation_matrix()
self.randomization_schedule = self.create_adaptive_schedule()
def initialize_correlation_matrix(self):
"""
Initialize correlation matrix for correlated parameter randomization
"""
n_params = len(self.get_all_param_names())
corr_matrix = np.eye(n_params)
# Define correlations between related parameters
# Example: friction and restitution might be correlated
param_indices = {name: idx for idx, name in enumerate(self.get_all_param_names())}
# Add some correlations (these would be learned from data in practice)
friction_idx = param_indices.get('friction', -1)
restitution_idx = param_indices.get('restitution', -1)
if friction_idx >= 0 and restitution_idx >= 0:
corr_matrix[friction_idx, restitution_idx] = 0.3
corr_matrix[restitution_idx, friction_idx] = 0.3
return corr_matrix
def get_all_param_names(self):
"""Get all parameter names"""
all_names = []
for group in self.param_groups.values():
all_names.extend(group)
return all_names
def randomize_with_correlations(self):
"""
Randomize parameters considering correlations
"""
param_names = self.get_all_param_names()
n_params = len(param_names)
# Generate correlated random variables using Cholesky decomposition
L = np.linalg.cholesky(self.correlation_matrix)
uncorrelated_vars = np.random.randn(n_params)
correlated_vars = L @ uncorrelated_vars
randomized_params = {}
for i, param_name in enumerate(param_names):
# Use the correlated variable to influence the randomization
base_min, base_max = self.get_base_range(param_name)
correlation_influence = correlated_vars[i] * 0.1 # Influence factor
# Adjust range based on correlation
adjusted_min = max(base_min, base_min + correlation_influence)
adjusted_max = min(base_max, base_max + correlation_influence)
randomized_params[param_name] = np.random.uniform(adjusted_min, adjusted_max)
return randomized_params
def get_base_range(self, param_name):
"""Get base randomization range for parameter"""
# This would typically come from a configuration
ranges = {
'friction': (0.0, 1.0),
'mass': (0.8, 1.2),
'restitution': (0.0, 0.5),
'gravity': (9.5, 10.1),
'texture_resolution': (100, 1000),
'lighting_condition': (0.5, 2.0),
'camera_noise': (0.0, 0.1),
'actuator_delay': (0.0, 0.05),
'max_force': (0.8, 1.2),
'gear_ratio': (0.9, 1.1)
}
return ranges.get(param_name, (0.0, 1.0))
def create_adaptive_schedule(self):
"""
Create adaptive randomization schedule
"""
schedule = {
'early_phase': {
'range_expansion_rate': 0.1,
'randomization_frequency': 1, # Every episode
'focus_areas': ['dynamics'] # Start with dynamics
},
'mid_phase': {
'range_expansion_rate': 0.05,
'randomization_frequency': 1,
'focus_areas': ['dynamics', 'visual']
},
'late_phase': {
'range_expansion_rate': 0.02,
'randomization_frequency': 2, # Every 2 episodes
'focus_areas': ['all']
}
}
return schedule
def adapt_randomization(self, performance_feedback):
"""
Adapt randomization based on performance feedback
"""
# This would analyze performance and adjust randomization strategy
# For example, if performance is degrading, might narrow ranges temporarily
# or focus on specific parameter groups
pass
Curriculum Domain Randomization​
class CurriculumDomainRandomizer:
def __init__(self):
self.curriculum_levels = [
{
'name': 'easy',
'difficulty': 0.1,
'param_ranges': self.get_easy_ranges(),
'duration': 1000, # episodes
'success_threshold': 0.8
},
{
'name': 'medium',
'difficulty': 0.3,
'param_ranges': self.get_medium_ranges(),
'duration': 2000,
'success_threshold': 0.7
},
{
'name': 'hard',
'difficulty': 0.6,
'param_ranges': self.get_hard_ranges(),
'duration': 3000,
'success_threshold': 0.6
},
{
'name': 'extreme',
'difficulty': 1.0,
'param_ranges': self.get_extreme_ranges(),
'duration': float('inf'), # Continue indefinitely
'success_threshold': 0.5
}
]
self.current_level = 0
self.episode_count = 0
self.performance_history = []
def get_easy_ranges(self):
"""Get parameter ranges for easy level"""
return {
'friction': (0.05, 0.15),
'mass': (0.95, 1.05),
'restitution': (0.05, 0.15),
'gravity': (9.7, 9.9),
'camera_noise': (0.0, 0.02)
}
def get_medium_ranges(self):
"""Get parameter ranges for medium level"""
return {
'friction': (0.0, 0.3),
'mass': (0.9, 1.1),
'restitution': (0.0, 0.25),
'gravity': (9.6, 10.0),
'camera_noise': (0.0, 0.05)
}
def get_hard_ranges(self):
"""Get parameter ranges for hard level"""
return {
'friction': (0.0, 0.6),
'mass': (0.8, 1.2),
'restitution': (0.0, 0.4),
'gravity': (9.5, 10.1),
'camera_noise': (0.0, 0.08)
}
def get_extreme_ranges(self):
"""Get parameter ranges for extreme level"""
return {
'friction': (0.0, 1.0),
'mass': (0.7, 1.3),
'restitution': (0.0, 0.5),
'gravity': (9.3, 10.3),
'camera_noise': (0.0, 0.1)
}
def get_current_randomization(self):
"""Get current randomization parameters"""
current_ranges = self.curriculum_levels[self.current_level]['param_ranges']
randomized_params = {}
for param, (min_val, max_val) in current_ranges.items():
randomized_params[param] = random.uniform(min_val, max_val)
return randomized_params
def update_curriculum(self, episode_performance):
"""Update curriculum level based on performance"""
self.performance_history.append(episode_performance)
self.episode_count += 1
# Check if we should advance to next level
if (self.episode_count >= self.curriculum_levels[self.current_level]['duration'] and
self.get_recent_performance() >= self.curriculum_levels[self.current_level]['success_threshold']):
if self.current_level < len(self.curriculum_levels) - 1:
self.current_level += 1
self.episode_count = 0 # Reset counter for new level
print(f"Advancing to curriculum level: {self.curriculum_levels[self.current_level]['name']}")
def get_recent_performance(self, window=100):
"""Get average performance over recent episodes"""
recent = self.performance_history[-window:]
if not recent:
return 0.0
return sum(recent) / len(recent)
def get_difficulty_level(self):
"""Get current difficulty level"""
return self.curriculum_levels[self.current_level]['name']
Domain Adaptation Techniques​
Unsupervised Domain Adaptation​
import torch
import torch.nn as nn
import torch.nn.functional as F
class DomainAdaptationNetwork(nn.Module):
def __init__(self, input_dim, hidden_dim=256, num_classes=10):
super(DomainAdaptationNetwork, self).__init__()
# Feature extractor
self.feature_extractor = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU()
)
# Label classifier
self.label_classifier = nn.Sequential(
nn.Linear(hidden_dim // 2, hidden_dim // 4),
nn.ReLU(),
nn.Linear(hidden_dim // 4, num_classes)
)
# Domain classifier
self.domain_classifier = nn.Sequential(
nn.Linear(hidden_dim // 2, hidden_dim // 4),
nn.ReLU(),
nn.Linear(hidden_dim // 4, 1),
nn.Sigmoid()
)
def forward(self, x, lambda_val=0.0):
features = self.feature_extractor(x)
# Reverse gradient for domain adaptation
reversed_features = GradientReverseLayer(lambda_val)(features)
class_output = self.label_classifier(features)
domain_output = self.domain_classifier(reversed_features)
return class_output, domain_output
class GradientReverseLayer(torch.autograd.Function):
"""
Gradient Reversal Layer
"""
@staticmethod
def forward(ctx, input, lambda_val):
ctx.lambda_val = lambda_val
return input
@staticmethod
def backward(ctx, grad_output):
lambda_val = ctx.lambda_val
return -lambda_val * grad_output, None
class DomainAdaptationTrainer:
def __init__(self, model, learning_rate=0.001):
self.model = model
self.optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
self.class_criterion = nn.CrossEntropyLoss()
self.domain_criterion = nn.BCELoss()
def train_step(self, sim_data, real_data, sim_labels, real_labels=None):
"""
Training step for domain adaptation
"""
batch_size = sim_data.size(0)
# Create domain labels (0 for sim, 1 for real)
sim_domain_labels = torch.zeros(batch_size).to(sim_data.device)
real_domain_labels = torch.ones(batch_size).to(real_data.device)
# Concatenate data
all_data = torch.cat([sim_data, real_data], dim=0)
all_domain_labels = torch.cat([sim_domain_labels, real_domain_labels], dim=0)
self.optimizer.zero_grad()
# Forward pass
class_outputs, domain_outputs = self.model(all_data, lambda_val=1.0)
# Split outputs
sim_class_out = class_outputs[:batch_size]
real_class_out = class_outputs[batch_size:]
domain_out = domain_outputs.squeeze()
# Compute losses
# Classification loss on simulated data (and real if labels available)
class_loss = self.class_criterion(sim_class_out, sim_labels)
if real_labels is not None:
class_loss += self.class_criterion(real_class_out, real_labels)
# Domain confusion loss
domain_loss = self.domain_criterion(domain_out, all_domain_labels)
# Total loss
total_loss = class_loss + domain_loss
total_loss.backward()
self.optimizer.step()
return total_loss.item(), class_loss.item(), domain_loss.item()
Adversarial Domain Adaptation​
class AdversarialDomainAdapter:
def __init__(self, feature_dim, hidden_dim=256):
# Generator (feature extractor)
self.generator = nn.Sequential(
nn.Linear(feature_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, feature_dim)
)
# Discriminator
self.discriminator = nn.Sequential(
nn.Linear(feature_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1),
nn.Sigmoid()
)
self.gen_optimizer = torch.optim.Adam(self.generator.parameters(), lr=0.0002)
self.disc_optimizer = torch.optim.Adam(self.discriminator.parameters(), lr=0.0002)
def train_adversarial_step(self, sim_features, real_features):
"""
Adversarial training step
"""
batch_size = sim_features.size(0)
# Labels for discriminator
real_labels = torch.ones(batch_size, 1).to(sim_features.device)
fake_labels = torch.zeros(batch_size, 1).to(sim_features.device)
# Train discriminator
self.disc_optimizer.zero_grad()
# Real features (should be classified as real)
disc_real_output = self.discriminator(real_features)
disc_real_loss = F.binary_cross_entropy(disc_real_output, real_labels)
# Fake features (simulated, should be classified as fake)
gen_output = self.generator(sim_features)
disc_fake_output = self.discriminator(gen_output.detach())
disc_fake_loss = F.binary_cross_entropy(disc_fake_output, fake_labels)
disc_loss = disc_real_loss + disc_fake_loss
disc_loss.backward()
self.disc_optimizer.step()
# Train generator (to fool discriminator)
self.gen_optimizer.zero_grad()
gen_output = self.generator(sim_features)
disc_gen_output = self.discriminator(gen_output)
gen_loss = F.binary_cross_entropy(disc_gen_output, real_labels) # Want discriminator to think it's real
gen_loss.backward()
self.gen_optimizer.step()
return gen_loss.item(), disc_loss.item()
Self-Supervised Domain Adaptation​
class SelfSupervisedDomainAdapter:
def __init__(self, encoder_dim=256):
# Encoder network
self.encoder = nn.Sequential(
nn.Linear(encoder_dim, encoder_dim // 2),
nn.ReLU(),
nn.Linear(encoder_dim // 2, encoder_dim // 4),
nn.ReLU(),
nn.Linear(encoder_dim // 4, 64) # Latent space
)
# Prediction head
self.predictor = nn.Sequential(
nn.Linear(64, encoder_dim // 4),
nn.ReLU(),
nn.Linear(encoder_dim // 4, encoder_dim // 2)
)
self.optimizer = torch.optim.Adam(
list(self.encoder.parameters()) + list(self.predictor.parameters()),
lr=0.001
)
def contrastive_loss(self, z_i, z_j, temperature=0.5):
"""
Contrastive loss for self-supervised learning
"""
batch_size = z_i.size(0)
# Normalize embeddings
z_i_norm = F.normalize(z_i, dim=1)
z_j_norm = F.normalize(z_j, dim=1)
# Positive similarities
pos_sim = F.cosine_similarity(z_i_norm, z_j_norm, dim=1).unsqueeze(1)
# Negative similarities
neg_sim_ii = torch.mm(z_i_norm, z_i_norm.t())
neg_sim_ij = torch.mm(z_i_norm, z_j_norm.t())
neg_sim_ji = torch.mm(z_j_norm, z_i_norm.t())
neg_sim_jj = torch.mm(z_j_norm, z_j_norm.t())
# Combine all similarities
all_sim = torch.cat([
torch.cat([neg_sim_ii, neg_sim_ij], dim=1),
torch.cat([neg_sim_ji, neg_sim_jj], dim=1)
], dim=0)
# Remove self-similarities
mask = torch.eye(2 * batch_size).to(z_i.device)
all_sim = all_sim.masked_fill(mask.bool(), float('-inf'))
# Compute loss
logits = torch.cat([pos_sim, all_sim], dim=1) / temperature
labels = torch.zeros(2 * batch_size).long().to(z_i.device)
loss = F.cross_entropy(logits, labels)
return loss
def train_self_supervised(self, sim_batch, real_batch):
"""
Self-supervised training step
"""
self.optimizer.zero_grad()
# Encode both domains
sim_encoded = self.encoder(sim_batch)
real_encoded = self.encoder(real_batch)
# Predict representations
sim_pred = self.predictor(sim_encoded)
real_pred = self.predictor(real_encoded)
# Compute contrastive loss
loss = self.contrastive_loss(sim_pred, real_pred)
loss.backward()
self.optimizer.step()
return loss.item()
Advanced Transfer Techniques​
Sim-to-Real with System Identification​
class SystemIdentificationTransfer:
def __init__(self):
self.sim_model_params = {}
self.real_model_params = {}
self.mapping_function = None
def identify_system_parameters(self, input_signal, output_signal):
"""
Identify system parameters from input-output data
"""
# For simplicity, assume linear system identification
# In practice, this would use more sophisticated methods
# Example: ARX model identification
# y(k) = -a1*y(k-1) - a2*y(k-2) + b1*u(k-1) + b2*u(k-2)
n = len(output_signal)
na, nb = 2, 2 # Model orders
# Form regression matrix
phi = np.zeros((n - max(na, nb), na + nb))
for i in range(max(na, nb), n):
idx = i - max(na, nb)
for j in range(na):
phi[idx, j] = -output_signal[i - j - 1]
for j in range(nb):
phi[idx, na + j] = input_signal[i - j - 1]
# Estimate parameters using least squares
Y = output_signal[max(na, nb):n]
theta = np.linalg.lstsq(phi, Y, rcond=None)[0]
a_est = theta[:na]
b_est = theta[na:]
return {'a': a_est, 'b': b_est}
def learn_mapping_function(self, sim_data, real_data):
"""
Learn mapping function between simulation and real parameters
"""
# This could be a neural network, GP, or other function approximator
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF
# Assume sim_data and real_data are parameter vectors
gp = GaussianProcessRegressor(kernel=RBF(), n_restarts_optimizer=10)
gp.fit(sim_data.reshape(-1, 1), real_data)
self.mapping_function = gp
return gp
def adapt_policy(self, sim_policy, adaptation_data=None):
"""
Adapt policy from simulation to real using system identification
"""
if self.mapping_function is not None:
# Apply mapping to policy parameters
adapted_policy = self.apply_mapping(sim_policy)
else:
# Use domain randomization approach
adapted_policy = self.randomize_and_test(sim_policy)
return adapted_policy
def apply_mapping(self, policy_params):
"""
Apply learned mapping to policy parameters
"""
if self.mapping_function is not None:
mapped_params = self.mapping_function.predict(policy_params.reshape(-1, 1))
return mapped_params.flatten()
else:
return policy_params
def randomize_and_test(self, policy):
"""
Use domain randomization to find robust policy
"""
best_policy = policy
best_performance = float('-inf')
for _ in range(100): # Try 100 randomizations
randomized_params = self.randomize_parameters()
performance = self.evaluate_policy(policy, randomized_params)
if performance > best_performance:
best_performance = performance
best_policy = policy
return best_policy
def randomize_parameters(self):
"""
Randomize system parameters for testing
"""
return np.random.uniform(0.5, 1.5, size=10) # Example
def evaluate_policy(self, policy, params):
"""
Evaluate policy with given parameters
"""
return np.random.random() # Placeholder
Few-Shot Domain Adaptation​
class FewShotDomainAdapter:
def __init__(self, meta_learning_rate=0.001):
self.meta_learner = MetaLearningNetwork()
self.meta_optimizer = torch.optim.Adam(
self.meta_learner.parameters(),
lr=meta_learning_rate
)
def meta_train(self, tasks, num_updates=5):
"""
Meta-training phase
"""
total_loss = 0
for task in tasks:
# Sample support and query sets
support_set = task['support']
query_set = task['query']
# Adapt to specific task
adapted_params = self.adapt_to_task(
support_set,
num_updates=num_updates
)
# Evaluate on query set
query_loss = self.evaluate_on_query(query_set, adapted_params)
total_loss += query_loss
# Update meta-learner
self.meta_optimizer.zero_grad()
total_loss.backward()
self.meta_optimizer.step()
return total_loss.item()
def adapt_to_task(self, support_set, num_updates=5):
"""
Adapt meta-learner to specific task using support set
"""
# Get initial parameters from meta-learner
params = self.meta_learner.get_params()
for _ in range(num_updates):
loss = self.compute_task_loss(support_set, params)
# Compute gradients and update (inner loop)
grads = torch.autograd.grad(loss, params.values())
# Update parameters
new_params = {}
for i, (name, param) in enumerate(params.items()):
new_params[name] = param - 0.01 * grads[i] # Inner loop LR
params = new_params
return params
def compute_task_loss(self, dataset, params):
"""
Compute loss for a specific task
"""
# This would involve forwarding through the network
# with the given parameters
return torch.tensor(0.0) # Placeholder
def evaluate_on_query(self, query_set, params):
"""
Evaluate adapted parameters on query set
"""
return torch.tensor(0.0) # Placeholder
class MetaLearningNetwork(nn.Module):
def __init__(self):
super().__init__()
self.network = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
def forward(self, x):
return self.network(x)
def get_params(self):
"""Return named parameters"""
return dict(self.named_parameters())
Practical Implementation Strategies​
Progressive Domain Transfer​
class ProgressiveDomainTransfer:
def __init__(self):
self.transfer_stages = [
{
'name': 'initial_training',
'method': 'pure_simulation',
'epochs': 1000,
'eval_frequency': 10
},
{
'name': 'domain_randomization',
'method': 'randomization',
'epochs': 2000,
'eval_frequency': 5
},
{
'name': 'fine_tuning',
'method': 'transfer_learning',
'epochs': 500,
'eval_frequency': 1
},
{
'name': 'real_world_validation',
'method': 'online_adaptation',
'epochs': float('inf'),
'eval_frequency': 1
}
]
self.current_stage = 0
self.stage_progress = 0
def execute_transfer_stage(self, stage_idx, data_provider):
"""
Execute a specific transfer stage
"""
stage = self.transfer_stages[stage_idx]
if stage['method'] == 'pure_simulation':
return self.execute_simulation_training(data_provider)
elif stage['method'] == 'randomization':
return self.execute_domain_randomization(data_provider)
elif stage['method'] == 'transfer_learning':
return self.execute_transfer_learning(data_provider)
elif stage['method'] == 'online_adaptation':
return self.execute_online_adaptation(data_provider)
def execute_simulation_training(self, data_provider):
"""
Execute pure simulation training
"""
print("Executing pure simulation training...")
# Train on simulation data only
return {'success': True, 'metrics': {'sim_reward': 0.95}}
def execute_domain_randomization(self, data_provider):
"""
Execute domain randomization training
"""
print("Executing domain randomization...")
# Train with randomized domain parameters
return {'success': True, 'metrics': {'sim_reward': 0.85, 'variance': 0.1}}
def execute_transfer_learning(self, data_provider):
"""
Execute transfer learning with limited real data
"""
print("Executing transfer learning...")
# Fine-tune on limited real data
return {'success': True, 'metrics': {'sim_reward': 0.75, 'real_reward': 0.65}}
def execute_online_adaptation(self, data_provider):
"""
Execute online adaptation
"""
print("Executing online adaptation...")
# Continuously adapt based on real-world feedback
return {'success': True, 'metrics': {'real_reward': 0.70}}
Validation and Monitoring​
class TransferValidationSystem:
def __init__(self):
self.metrics_history = {
'sim_performance': [],
'real_performance': [],
'transfer_gap': [],
'domain_similarity': []
}
def validate_transfer(self, policy, sim_env, real_env):
"""
Validate policy transfer across domains
"""
# Evaluate on simulation
sim_returns = self.evaluate_policy(policy, sim_env)
self.metrics_history['sim_performance'].append(sim_returns)
# Evaluate on real environment
real_returns = self.evaluate_policy(policy, real_env)
self.metrics_history['real_performance'].append(real_returns)
# Calculate transfer gap
transfer_gap = sim_returns - real_returns
self.metrics_history['transfer_gap'].append(transfer_gap)
# Calculate domain similarity
sim_features = self.extract_features(sim_env)
real_features = self.extract_features(real_env)
domain_sim = self.calculate_domain_similarity(sim_features, real_features)
self.metrics_history['domain_similarity'].append(domain_sim)
return {
'sim_return': sim_returns,
'real_return': real_returns,
'transfer_gap': transfer_gap,
'domain_similarity': domain_sim
}
def evaluate_policy(self, policy, env):
"""
Evaluate policy in environment
"""
total_reward = 0
state = env.reset()
for _ in range(100): # Evaluation horizon
action = policy.act(state)
state, reward, done, _ = env.step(action)
total_reward += reward
if done:
break
return total_reward
def extract_features(self, env):
"""
Extract features from environment for comparison
"""
# This would extract relevant features for domain comparison
return np.random.rand(10) # Placeholder
def calculate_domain_similarity(self, features1, features2):
"""
Calculate similarity between two feature sets
"""
# Use some distance measure (e.g., MMD, correlation)
return np.corrcoef(features1, features2)[0, 1] # Placeholder
def generate_transfer_report(self):
"""
Generate comprehensive transfer validation report
"""
report = {
'average_sim_performance': np.mean(self.metrics_history['sim_performance']),
'average_real_performance': np.mean(self.metrics_history['real_performance']),
'average_transfer_gap': np.mean(self.metrics_history['transfer_gap']),
'final_domain_similarity': self.metrics_history['domain_similarity'][-1] if self.metrics_history['domain_similarity'] else 0,
'transfer_efficiency': self.calculate_transfer_efficiency()
}
return report
def calculate_transfer_efficiency(self):
"""
Calculate transfer efficiency metric
"""
if (len(self.metrics_history['sim_performance']) > 0 and
len(self.metrics_history['real_performance']) > 0):
avg_sim = np.mean(self.metrics_history['sim_performance'])
avg_real = np.mean(self.metrics_history['real_performance'])
if avg_sim > 0:
return avg_real / avg_sim
else:
return 0
return 0
Best Practices and Guidelines​
1. Gradual Complexity Increase​
- Start with simple environments and gradually increase complexity
- Use curriculum learning approaches
- Validate at each complexity level
2. Systematic Randomization​
- Randomize parameters that are known to differ between sim and real
- Use wide ranges to ensure robustness
- Monitor performance during randomization
3. Real-World Feedback Loop​
- Collect real-world data to inform simulation improvements
- Use Bayesian optimization for hyperparameter tuning
- Implement online adaptation mechanisms
4. Validation Strategy​
- Use multiple validation metrics
- Test across diverse conditions
- Monitor long-term performance stability
Learning Objectives​
By the end of this lesson, you should be able to:
- Understand the sim-to-real transfer problem and its challenges
- Implement domain randomization techniques to improve policy robustness
- Apply domain adaptation methods to bridge simulation-reality gaps
- Use advanced techniques like system identification and meta-learning for transfer
- Validate and monitor sim-to-real transfer performance
- Apply best practices for progressive domain transfer
- Design comprehensive validation strategies for transfer learning